Trabalho inicial com raizes de números exatos
Mostrar aos alunos como explorar a área do quadrado é uma boa maneira de introduzir o conceito da radiciação
01/03/2010
Este conteúdo é gratuito, entre na sua conta para ter acesso completo! Cadastre-se ou faça login
Compartilhe:
Jornalismo
01/03/2010
Dê um basta ao enunciado "a raiz quadrada de um número N é igual a um número positivo elevado ao quadrado" e aos tradicionais exercícios que costumam ser propostos aos estudantes após essa explicação. Quando esse é o procedimento colocado em cena, é comum surgirem perguntas como "Para que isso serve?", "De onde surgiu essa ideia?" e "Por que é feito assim?".
A raiz quadrada é um conteúdo que tem pouquíssima ligação com os contextos cotidianos e está mais relacionada ao puro fazer matemático e ao trabalho de profissionais como arquitetos, engenheiros, projetistas e programadores. "Por ser uma ideia bastante abstrata, dificilmente os jovens vão entendê-la somente com uma explicação teórica", fala Andréia Silva Brito, docente da EEEFM Carlos Drumond de Andrade, em Presidente Médici, a 412 quilômetros de Porto Velho.
"Para que os alunos construam um entendimento lógico do conceito de raiz quadrada e realizem a operação com números de diferentes grandezas, é preciso propor que encontrem soluções para diversos problemas", diz Priscila Monteiro, assessora de Matemática de redes públicas e privadas e selecionadora do Prêmio Victor Civita - Educador Nota 10.
A saída é explicar que o valor da raiz está na área do quadrado
O termo raiz, de acordo com o dicionário Houaiss, quer dizer "base ou parte inferior". E quadrada remete "à figura plana quadrado". As definições ajudam a compreender que extrair a raiz quadrada exata de um número significa encontrar o tamanho de um dos lados de um quadrado conhecendo sua área. A ideia foi concebida por matemáticos árabes e adotada pelos europeus no fim da Idade Média. Iniciar o trabalho em sala com essa estratégia geométrica é um bom caminho, pois ela garante que o aluno perceba um sentido para o cálculo (leia a sequência didática).
Por exemplo: se uma toalha tem 25 centímetros quadrados de área, qual o tamanho de cada um dos lados? Vale lançar mão do cálculo mental, usar a calculadora, desenhar a figura em papel quadriculado e calcular por aproximação: incentive o grupo a encontrar diferentes estratégias e ferramentas para chegar ao resultado (veja três possibilidades de calcular a raiz quadrada de 144 no quadro abaixo). Usá-las para discutir os procedimentos válidos e econômicos é uma excelente ferramenta didática - lembrando que não existe só uma maneira certa para resolver um problema.
Outra possibilidade para explorar o assunto ainda usando a geometria é mostrar quadrados de tamanhos diferentes e pedir que os estudantes descubram a medida dos lados e a área. "Com ou sem régua, eles podem quadricular as figuras e contar quantos quadradinhos iguais foram criados", explica Ademir Pereira Júnior, professor do Colégio Estadual Adaile Maria Leite, em Maringá, a 423 quilômetros de Curitiba. Ao quadricular uma das figuras, quem obtiver cinco quadradinhos iguais em linha, por exemplo, vai saber que o lado da figura mede 5, e a área, 25 - e, em consequência disso, chegará à raiz de 25.
Os bastidores do raciocínio
A geometria é uma das formas de encontrar a raiz quadrada. Confira outras três possibilidades de resolução, mostradas no exemplo seguinte: .
Aproximação
A base desta estratégia é buscar a resposta usando a tabuada de números iguais memorizada (ou não) até alcançar o número pedido.
Decomposição
A ideia é decompor o número do qual quer se encontrar a raiz em números primos, começando pelo 2. Após obter o resultado 1, basta agrupar os divisores em pares e realizar uma multiplicação.
Método chinês
Requer subtrair do número do qual se quer encontrar a raiz números ímpares até obter zero. O resultado é a quantidade de contas, pois a soma de sucessivos ímpares é um número quadrado.
Potenciação e tabuada ajudam a compreender o cálculo
Um deslize muito comum que a moçada costuma cometer é tentar calcular a raiz quadrada dividindo o número por 2. O erro aparece quando se baseia na ideia que se é 2 (já que 4:2 também resulta 2) porque
não pode ser 32 e
não é 50? Por isso, é interessante que os jovens reconheçam que a radiciação é o inverso da potenciação e percebam que a base do conteúdo é a tabuada de números iguais (como 3 x 3, 9 x 9 e 15 x 15). Assim, fica mais fácil entender outros caminhos de resolução e os diversos conceitos que existem por trás deles e, dessa forma, compreendê-los melhor.
Trabalhar dessa maneira permite que os jovens, quando estiverem nas séries finais do Ensino Fundamental e no Ensino Médio, saibam resolver equações algébricas e fórmulas químicas que tenham raízes, escolher a melhor estratégia para ser usada e explicar por que a resposta faz (ou não) sentido.
A estratégia ajuda a moçada a dominar as ferramentas matemáticas para que saibam usá-las não somente na vida cotidiana como também para resolver questões teóricas sem enxergá-las como um amontoado de algarismos, letras e símbolos sem sentido.
Quer saber mais?
CONTATOS
Ademir Pereira Junior
Andréia Silva Brito
Priscila Monteiro
BIBLIOGRAFIA
Didática da Matemática - Reflexões Psicopedagógicas, Cecilia Parra e Irma Saiz (orgs.), 258 págs., Ed. Artmed, tel. 0800-703-3444, 42 reais
O Ensino de Matemática Hoje, Patricia Sadovsky, 112 págs., Ed. Ática, tel. 0800-115-152, 25,90 reais
Últimas notícias